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Abstract 

The viability of utility scale solar PV farms will depend critically upon the annual production 

of such farms. A crucial determinant of solar PV yield will be prevailing solar irradiance and 

weather conditions.  In Australia, the combined effects of weather relating to solar irradiance, 

temperature and rainfall on PV yield is likely to be closely linked to the El Niño–Southern 

Oscillation ENSO cycle. To investigate this we use NREL’s SAM model to simulate 

electricity production from a 3.275 megawatt pilot solar PV plant at the University of 

Queensland’s Gatton Campus. A key finding was that the best simulated PV yields were 

obtained during 2013 and 2014 when ENSO neutral conditions but with an El Nino bias 

prevailed. The worst years were 2010 and 2011 which were characterised by moderate and 

weak La Nina phases of ENSO. All other years considered had average PV yield outcomes 

including 2015 which experienced a very strong El Nino event. 

(1) INTRODUCTION  

Economic assessment of the viability of solar PV farms depends crucially on the PV 

yield of these farms. In Australia, PV yield for utility scale solar PV farms will underpin 

revenue streams from: (1) merchant sale of electricity into the wholesale electricity market; 

(2) sale of eligible renewable energy certificates generated under the Large-scale Renewable 

Energy Target (LRET) scheme (CER, 2016); and (3) sale of electricity and sale or surrender 

of renewable energy certificates under PPA agreements with retail electricity companies. In 
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principal, project viability requires that these revenue streams be sufficient to cover: (1) 

capital costs associated with the solar PV farm’s construction; (2) operation and maintenance 

expenditures linked to day to day operations of the solar farm; and (3) required return on 

invested capital. 

In general, solar PV yield will depend on a number of different factors including: (1) 

solar irradiance and weather conditions; (2) soiling and shading effects; and (3) electrical 

losses associated with solar array infrastructure and the electricity network. In relation to 

weather conditions identified in the first point above, key variables will be ambient 

temperature and rainfall. The latter variable rainfall will play two potentially conflicting 

roles. First, rainfall will reduce levels of solar irradiance, especially direct beam solar 

irradiance, reducing PV yield. Second, rainfall will be a crucial factor in keeping PV modules 

clean, reducing module soiling and increasing PV yield harvested during non-rainy periods. 

In Australia, the combined effects of weather relating to solar irradiance, temperature 

and rainfall on PV yield is likely to be closely linked to the El Niño–Southern Oscillation 

ENSO cycle (BOM, 2016).  This paper will highlight some aspects of this interaction by 

simulating hourly PV yields using the US National Renewable Energy Laboratory’s (NREL) 

System Advisor Model (SAM) for years 2007-2015. These years capture different phases of 

the ENSO cycle and will enable assessment of how PV yield might vary with the different 

phases of ENSO. We will apply the PV simulations to The University of Queensland’s Gatton 

Solar Research Facility (GSRF) which is a 3.275 megawatt pilot solar PV plant. 

The structure of this paper is as follows.  The next section will give a brief description 

of the GSRF which underpins the modelling performed in this paper. Section 3 will contain a 

discussion of the approach utilised and critical requirements related to simulating PV yield of 

GSRF using the SAM model.  Section 4 will contain a statistical analysis of simulated hourly 

solar PV yields of GSRF, including projections of annual solar PV yield for years 2016, 2017 

and 2018 given currently available ENSO forecasts. The last section will contain conclusions.  
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(2) GSRF DESIGN AND LAYOUT  
 

(2.1) Layout of GSRF  

The GSRF is a solar pilot plant that comprises three different solar sub-array 

technologies: (1) a Fixed Tilt (FT) array comprising three identical 630 kW systems (UQ, 

2015a); (2) a 630 kW Horizontal Single Axis Tracking (SAT) Array utilising First Solar’s 

SAT system (UQ, 2015b); and (3) a 630 kW Dual Axis Tracker (DAT) utilising the 

Degertraker 5000 HD system (UQ, 2015c).  

An overhead NearMap picture of the GSRF is documented in Figure 1. The three FT 

sub-arrays can be located, respectively, at the top right hand side (termed the ‘Top’ FT sub-

array) and with the main FT sub-arrays being located just below the buildings and line of 

trees but above the road in Figure 1. For the purpose of this report, we split the main FT sub- 

into a left hand side sub-array (e.g. far left hand side part of the main FT array) and a right 

hand side sub-array which is that component directly in front of the UQ Solar Research 

facility in Figure 1.  The FT system design has the following technical design features:  

 All modules have a tilt angle of 20 degrees; and  

 All modules have an azimuth angle of 357 degrees (e.g. modules are facing in the 

direction of three degrees west of north). 

The SAT sub-array can be located in Figure 1 immediately below the top FT sub-

array, adjacent to the main FT sub-arrays and also above the road in Figure 1. The SAT sub-

array has the following technical aspects:  

 The sub-array is a horizontal array and thus has a tilt angle of 0 degrees; 

 The sub-array has an azimuth angle of 357 degrees (e.g. same as the FT system);  

 Maximum tracker rotation limit is set to 45 degrees; and  

 No backtracking is implemented.  

In Figure 1, the DAT sub-array is located underneath the main FT sub-arrays and 

below the road.  There are 160 individual trackers installed at Gatton that are capable of a 340 

degree slewing motion and a 180 degree tilt that allow the panels to directly face the sun at all 

times of the day, thereby maximising output. 
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The same First Solar CdTe FS-395 PLUS modules are installed on all five sub-arrays. 

There are in excess of 36,000 modules installed at GSRF across the five sub-arrays. The same 

type of inverter is also connected to each of the 630 kW sub-arrays and is a SMA Sunny 

Central 720CP XT inverter.  Therefore, the whole array contains five inverters and through 

the current connection agreement with the local distribution network service provider 

Energex, each inverter’s output is limited to 630 kW. 

Figure 1. NearMap Picture of the GSRF Solar Array 

 

 

(3) DESIGN INFORMATION USED IN SAM MODELLING 

(3.1) Background 

The SAM model (Gilman, 2015) was used to simulate the PV yield of the whole 

GSRF solar farm. Implementation of SAM modelling requires information relating to system 

design and size including information about: (1) number of modules in a string; (2) number 

of strings in parallel; and (3) the number of inverters. From this information as well as 

additional information supplied about modules and inverters, the following system 

information is determined: (1) maximum DC capacity of the solar array; (2) maximum DC 

input capacity of the inverters; and (3) maximum AC output capacity of the inverters. The 

key system design parameters and quantities used in the SAM simulations for each sub-array 

are reported in Table 1. 
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Table 1. Sub-array System Design Parameters 

Description Value Measurement 
Unit 

Modules per string 15 NA 

Strings in parallel 480 NA 

Number of inverters 1 NA 

   

Configuration at reference conditions   

     

Modules:     

Nameplate capacity  685.901 kWdc 

Number of modules  7,200 NA 

Total module area  5,184 m2 

Total land area  4.3 acres 

   

Inverters:   

Nameplate capacity – on output 630.000 kWac 

Nameplate capacity – on input 638.945 kWdc 

The modelling approach adopted for the complete solar farm was to model the whole 

array as five separate sub-arrays according to the design parameters listed in Table 1 and with 

separate near-object and diffuse shading factors for each individual sub-array. The system 

wide PV yield was then calculated as the sum of the PV yields of the five separate sub-arrays.   

SAT tracking is implemented in SAM by setting the tilt angle to a pre-specified value 

(e.g. 0 degrees in our case) and having the tracking algorithm rotate the sub-array to track the 

azimuth angle of the sun’s position, within limits set by the maximum tracker rotation limit 

(e.g. 45 degrees in our case). In the case of the DAT tracking algorithm, the tilt and azimuth 

angles of the tracking mechanism are set by the zenith and azimuth angles of the sun’s 

position throughout the day (Gilman, 2015, Chapter 5.2).  

(3.2) PV Yield Simulation Using the SAM Model 

To run simulations in SAM, various user supplied inputs are required.  These relate 

to: (1) hourly solar and weather data; (2) technical information about modules, inverters, 

array sizing and design; (3) soiling effects; (4) shading effects; and (5) DC and AC electrical 

losses.  In the modelling performed for this paper, we also assumed that all modules, inverters 

and solar tracking infrastructure were in good working order. 
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Solar and weather data  

The solar data was obtained from the Australian Bureau of Meteorology’s (BOM) 

hourly solar irradiance satellite gridded data (BOM, 2015) whilst the weather data was 

sourced from the BOM’s Automatic Weather Station (AWS) located at the University of 

Queensland’s Campus at Gatton. Further details can be found in Wild (2016). Within SAM, 

the Perez Sky Diffuse model was used to determine Plane-of-Array (POA) irradiance 

(Gilman, 2015, Section 6.2). 

Soiling effects  

After solar irradiance and temperature, module soiling is generally regarded as the 

third most important factor determining solar PV yield (Gilman, 2015, Section 7.5). To assess 

the potential impact of soiling, three soiling scenarios were developed, termed ‘low’, 

‘medium’ and ‘high’. The determination of these particular soiling scenarios was linked to 

recorded daily rainfall over the period 2007 to 2015 at the nearby UQ Gatton Campus BOM 

AWS and assumed daily soiling rates applicable in the absence of daily rainfall. The soiling 

factors were also adjusted for local spectrum (see Wild (2016) for further details). For 

completeness, the monthly soiling factors employed for the three module soiling scenarios 

are reproduced in Table 2. 

  

Table 2. Different augmented soiling rate configurations (Percentage) 

 

Month Low Medium High 
Jan 0.0 0.0 0.0 

Feb 0.1 0.5 1.8 

Mar 0.3 0.5 1.1 

Apr 1.2 2.0 4.3 

May 2.3 4.4 8.2 

Jun 2.4 4.0 6.7 

Jul 3.6 7.0 9.5 

Aug 3.7 6.8 10.6 

Sep 3.2 6.6 12.5 

Oct 2.5 5.2 10.5 

Nov 0.9 1.4 2.5 

Dec 0.3 0.4 0.9 
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Annualised 
Average 

1.7 3.2 5.7 

Shading effects  

Solar PV yield assessment using SAM also requires that the effects of shading on 

modules be accounted for. Near-object shading can be interpreted as a reduction in POA 

incident irradiation by external objects located near to the array such as building and trees 

and is assumed to affect each sub-array uniformly. Account of near-shading effects is 

performed in SAM utilizing a three-dimensional representation of the sub-arrays and nearby 

external shading objects. Near-object shading affects both direct (beam) and diffuse POA 

irradiance (Gilman, 2015, Section 7.2).  

The reduction in beam irradiance due to near-object shading is modelled by a set of 

hourly shading losses that reduce the plane-of-array beam solar irradiance in a given hour. 

The reduction in diffuse POA irradiance is modelled by a single sky diffuse loss percentage.  

In calculating the sky diffuse shading factor in SAM, an isotropic diffuse radiation model is 

assumed in which diffuse radiation is assumed to be uniformly distributed across the sky 

(Gilman, 2015, Section 7.2).  

We utilised SAM’s 3d shading calculator to determine both near object direct beam 

and constant sky diffuse shading losses for the five sub-arrays. The near object direct beam 

shading losses by hour and month determined for the five sub-arrays are reported in Table 3, 

Panels (A)-(E). The constant sky diffuse shading losses for each of the five sub-arrays are 

reported in Table 4.  

In interpreting the percentage values listed in Table 3, values of 100 indicate complete 

shading. Values between 100 and zero per cent indicate partial shading with the extent of 

shading declining with the magnitude of the shading percentage value. Finally, a value of 

zero indicates no near-object shading effect. 
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Table 3. Direct beam near-object shading factors for Gatton sub-

arrays (Percentage) 

Panel (A): Left Hand Side Main FT sub-array 

 

Panel (B): Right Hand Side Main FT sub-array 

 

Panel (C): Top FT sub-array1 

 

                                                           
1 The shading percentages reported in Panel (C) for the top FT sub-array reflect the impact of two trees that 
were in very close proximity to the sub-array.  These trees have very recently been cut down so the shading 
effects outlined in Panel (C) would now overstate the extent of near-object shading.   

Month 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

JAN 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

FEB 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

MAR 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

APR 100 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.0 100

MAY 100 83.5 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 36.5 100 100

JUN 100 100 39.6 1.2 0.0 0.0 0.0 0.0 0.0 0.1 3.9 56.1 100 100

JUL 100 100 33.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.3 42.3 100 100

AUG 100 94.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 100 100

SEP 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 100

OCT 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

DEC 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

Month 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

JAN 100 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.6 100

FEB 100 0.8 0.3 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.8 100

MAR 100 0.8 0.5 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.3 0.4 1.2 100

APR 100 13.0 0.5 0.3 0.2 0.1 0.1 0.1 0.2 0.2 0.3 2.5 80.5 100

MAY 100 83.7 6.1 0.4 0.2 0.2 0.2 0.2 0.2 0.6 4.7 60.7 100 100

JUN 100 100 29.4 2.2 0.3 0.2 0.2 0.3 0.6 2.1 15.9 76.1 100 100

JUL 100 100 25.3 1.6 0.3 0.2 0.2 0.2 0.4 1.0 8.1 65.4 100 100

AUG 100 72.9 1.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.6 14.8 100 100

SEP 100 1.1 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.6 19.9 100

OCT 100 0.6 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 1.9 100

NOV 1.3 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.5 1.0 100

DEC 100 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 100

Month 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PMJAN 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100FEB 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100MAR 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100APR 100 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.0 100MAY 100 83.5 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 36.5 100 100JUN 100 100 39.6 1.2 0.0 0.0 0.0 0.0 0.0 0.1 3.9 56.1 100 100JUL 100 100 33.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.3 42.3 100 100AUG 100 94.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 100 100SEP 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 100OCT 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100DEC 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

Month 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

JAN 100 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 0.1 0.0 0.0 0.0 100

FEB 100 0.0 0.0 0.2 0.8 0.9 0.6 0.6 1.0 1.2 1.1 0.2 0.0 100

MAR 100 0.0 3.3 3.4 2.6 2.4 1.4 1.4 2.2 2.9 4.2 6.5 34.8 100

APR 100 60.8 14.0 6.8 4.0 3.6 2.2 2.5 3.8 5.4 8.2 23.1 83.7 100

MAY 100 79.4 61.9 17.2 8.0 6.5 4.6 5.4 7.3 11.6 17.9 46.7 100 100

JUN 100 100 81.8 33.6 13.3 9.5 7.0 7.7 10.4 17.0 24.0 46.3 100 100

JUL 100 100 85.0 29.9 11.8 8.2 6.2 6.3 8.6 13.8 19.5 43.3 100 100

AUG 100 71.5 41.8 11.5 5.9 5.0 3.3 3.5 5.2 7.3 11.1 37.3 100 100

SEP 100 8.0 6.7 4.8 3.0 2.8 1.6 2.1 3.0 3.9 6.0 10.2 92.7 100

OCT 100 0.0 0.8 1.6 1.6 1.4 0.7 1.2 1.7 2.2 2.5 1.4 39.8 100

NOV 0.0 0.0 0.0 0.0 0.2 0.3 0.1 0.3 0.5 0.3 0.0 0.0 4.1 100

DEC 100 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 100

Month 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PMJAN 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100FEB 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100MAR 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100APR 100 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.0 100MAY 100 83.5 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 36.5 100 100JUN 100 100 39.6 1.2 0.0 0.0 0.0 0.0 0.0 0.1 3.9 56.1 100 100JUL 100 100 33.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.3 42.3 100 100AUG 100 94.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 100 100SEP 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.7 100OCT 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100DEC 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100
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Panel (D): SAT sub-array 

 

Panel (E): Direct beam shading factors: representative DAT sub-array 

 

In general, the DAT sub-array (Panel E) has the lowest shading impacts in the early 

morning and early evening hours when compared to the shading effects of both the FT and 

SAT sub-arrays. The SAT sub-array (Panel D) has the next lowest shading impacts with the 

FT sub-arrays experiencing the highest near object shading effects.  Note that this outcome 

was also observed in the constant sky diffuse shading loss percentages reported in Table 4. Of 

particular interest for PV yields projections is that the main FT sub-arrays (e.g. Panels A and 

B) experience very little or no near object direct beam shading over the period 9 AM to 2 

PM. However, in the case of the Top FT array (Panel C), shading effects occur throughout 

the day reflecting the close proximity of two trees near to this sub-array. In contrast, the 

representative SAT and DAT sub-arrays (Panels D and E) experience very little or no near 

object direct beam shading over slightly broader time horizons of 8 AM to 3 PM and 7 AM to 

4 PM, respectively. 

  

Month 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

JAN 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2

FEB 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6

MAR 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

APR 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.7 100

MAY 100 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.2 100 100

JUN 100 100 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 53.2 100 100

JUL 100 100 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.5 100 100

AUG 100 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 100 100

SEP 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.4 100

OCT 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

NOV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

DEC 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.9

Month 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM

JAN 8.8 2.2 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FEB 100 3.1 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MAR 100 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

APR 100 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

MAY 100 15.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 100

JUN 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 100

JUL 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 100

AUG 100 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 100

SEP 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

OCT 5.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

NOV 7.5 1.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100

DEC 7.8 1.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4. Diffuse Shading Factors for Gatton sub-arrays (Percentage) 

 

Sub-array Diffuse 
Shading 

factor 

LHS Main FT 4.45 

RHS Main FT 5.80 

Top FT 7.19 

SAT 1.96 

DAT 1.10 

In the SAM modelling, self-shading was directly implemented for the three FT sub-

arrays as well as for the SAT sub-array (Gilman, 2015, Section 7.3 and Chapter 8). The 

design settings adopted for self-shading analysis are listed in Table 5.  For each FT sub-array, 

the basic design structure encapsulated ten rows of panels, with each row containing four 

modules stacked vertically on top of each other in landscape orientation. The number of 

modules in each row was 180. The row spacing between each row was 4.27 meters.  

In the case of the SAT array, there are 30 rows with 4 modules stacked vertically on 

top of each other in landscape orientation. The number of modules along the bottom of each 

row is 60. The row spacing between each row is 7.30 meters. 

Because the modules used in all five sub-arrays are thin film First Solar FS-395 PLUS 

modules, we employ the thin film linear shading option in SAM to model self-shading 

effects.   This option is for specially-designed thin film modules with cells and bypass diodes 

wired in such a way that the modules output varies linearly with shaded area of the module. 

More generally, we found that incorporating self-shading in the PV Yield analysis for the FT 

and SAT sub-arrays had the effect of reducing total output by a tenth of one per cent for the 

FT sub-array and by around one per cent for the SAT array. Details of self-shading losses 

experienced for the SAT array by both soiling scenario and year (over the period 2007-2015) 

can be discerned from Panel (A) of Table 6. 
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Table 5. Self-shading Design Settings Used In SAM Modelling 

 

Design Feature FT sub-array SAT sub-
array 

Number of modules along the side of row 4 4 

Number of modules along the bottom of 
row 

180 60 

Number of rows 10 30 

Shading algorithm Thin film (linear) Thin film (linear) 

Module orientation Landscape Landscape 

Length of side (in meters) 1.69 1.69 

Ground coverage ratio (%) 0.37 0.23 

Row spacing (in meters) 4.27 7.30 

The reason why self-shading losses are greater for the SAT array is that it can rotate 

to track the azimuth angle of the sun, thereby producing greater yield in the early morning 

and early evening hours when self-shading effects are most prevalent. Thus, the reduction in 

output due to self-shading is greater in the case of the SAT array when compared with the FT 

array whose azimuth (and tilt) angle are fixed throughout the day. As a result, the system 

cannot track the sun’s position, thus implying much lower levels of POA irradiance for FT 

arrays when self-shading effects principally arise.   

Unfortunately, self-shading effects are not currently calculated in SAM for the DAT 

array. Therefore, we attempted to loosely approximate these losses by applying the self-

shading weights determined by hour, month and year for the SAT system to PV yields given 

the near-object and diffuse shading factors specific to the GSRF DAT sub-array. This 

approach would have some worth to the extent that the timing of self-shading effects is likely 

to coincide for both the SAT and DAT sub-arrays. However, because both the row spacing 

and orientation will be different for the DAT sub-array, the actual shading factors will likely 

be significantly different to those calculated for the SAT sub-array. 

In general, we would expect self-shading losses for the DAT array to be magnified 

further because both the tilt and azimuth angles of the DAT array track the sun’s zenith and 

azimuth angles over the day. Thus, both tilt and azimuth tracking would be expected to 

improve the POA irradiance of the array over the competing FT and SAT arrays. As such, we 
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would expect the DAT array to be more susceptible to larger output reductions in the early 

morning and evening hours when self-shading effects are most prevalent. Support for this 

proposition can be found in the results presented in Panel (B) of Table 6 which shows 

average self-shading losses by year when the hourly self-shading loss factors of the SAT 

array are applied to the output of the DAT array. In this case, the self-shading losses for the 

DAT array are around 3.5 per cent across all three soiling scenarios. This result can be 

contrast with the equivalent result for the SAT sub-array of 1 per cent. 

Table 6. Self-shading Losses (%) by Array Tracking Type and Soiling 

Scenario 

Panel (A): SAT Array 

Year Low 
soiling 

Medium 
soiling 

High 
soiling 

2007 -1.10 -1.10 -1.10 

2008 -1.14 -1.14 -1.15 

2009 -1.14 -1.14 -1.14 

2010 -1.06 -1.06 -1.06 

2011 -0.97 -0.97 -0.97 

2012 -1.01 -1.01 -1.01 

2013 -1.15 -1.14 -1.14 

2014 -1.02 -1.01 -1.02 

2015 -0.67 -0.67 -0.67 

Average -1.03 -1.03 -1.03 

Panel (B): DAT array 

Year Low 
soiling 

Medium 
soiling 

High 
soiling 

2007 -3.55 -3.55 -3.55 

2008 -3.57 -3.57 -3.57 

2009 -3.57 -3.57 -3.58 

2010 -3.55 -3.54 -3.54 

2011 -3.50 -3.50 -3.50 

2012 -3.38 -3.37 -3.36 

2013 -3.55 -3.54 -3.54 

2014 -3.46 -3.45 -3.45 
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2015 -3.06 -3.07 -3.08 

Average -3.47 -3.46 -3.46 

 

Module and Inverter Information 

Details relating to module and inverter information employed in the SAM modelling 

remain the same as discussed in Wild (2016). Recall that the modules used at GSRF are First 

Solar CdTe FS-395 PLUS modules and each of the five sub-arrays is connected to SMA 

Sunny Central 720CP XT inverter with operational sent-out capacity restricted to 630 kW 

through the current connection agreement. 

For completeness, the parameter settings required for the SAM simulations for 

modules and inverters are listed in Panels (A) and (B) of Table 7, respectively 

Table 7. SAM Module and Inverter Parameter Settings 

Panel (A): Modules 

Description Value Measurement 
Unit 

Module description - Thin Film Cadmium Telluride module First Solar FS-
395 PLUS  

NA 

Cell type – CdTe NA NA 

Module area 0.72 m2 

Nominal operating cell temperature 45 oC 

Maximum power point voltage (Vmp) 45.8 V 

Maximum power point current (Imp) 2.08 A 

Open circuit voltage (Voc) 58 V 

Short circuit current (Isc) 2.29 A 

Temperature coefficient of Voc -0.28 %/ oC 

Temperature coefficient of Isc 0.04 %/ oC 

Temperature coefficient of maximum power point -0.29 %/ oC 

Number of cells in series 146 NA 

Standoff height  Ground or rack 
mounted 

NA 

Approximate installation height  one story 
building height 
or lower 

NA 
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Panel (B): Inverters 

Description Value Measurement 
Unit 

Inverter type SMA Sunny 
Central 720CP 
XT 

NA 

Maximum AC power output 630,000 Wac 

Manufacturer efficiency 98.6 % 

Maximum DC input power 638,945 Wdc 

Nominal AC voltage 324 Vac 

Maximum DC voltage 1000 Vdc 

Maximum DC current 1400 Adc 

Minimum MPPT DC voltage 577 Vdc 

Nominal DC voltage 577 Vdc 

Maximum MPPT DC voltage 850 Vdc 

Power consumption during operation 1950 Wdc 

Power consumption at night 100 Wac 

 

DC and AC Losses 

 

Details relating to DC and AC losses employed in the SAM modelling also remain the 

same as discussed in Wild (2016). Thus, values for derating DC array output associated with 

DC electrical losses of between 3.56 and 3.99 per cent were adopted, depending upon the 

array technology, together with AC electrical losses of 2.14 per cent. Details of specific 

settings are listed in Table 8.  

Table 8. DC and AC Electrical Losses Used in SAM Modelling 

Description FT Value (%) SAT Value (%) DAT Value 
(%) 

DC Array Losses    

Mismatch 1.1 1.1 1.1 

Diodes and connections 0.0 0.0 0.0 

DC wiring 1.5 1.5 1.5 

DC tracking losses 0.0 0.45 0.42 

Nameplate DC power loss  1.0 1.0 1.0 

DC power optimisation 0.0 0.0 0.0 

Total DC losses 3.56 3.99 3.96 

    

AC System losses    

AC wiring 1.0 1.0 1.0 

Transformer losses 1.15 1.15 1.15 

Total AC Losses 2.14 2.14 2.14 
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It should be noted that the DC ‘Mismatch’ and ‘Nameplate’ loss factors were partially 

reduced to ensure that net losses were zero when the modification were made to ensure that 

the augmented soiling loss factors adjusted for local spectrum reported in Table 2 were non-

negative.  

(4) STATISTICAL ANALYSIS OF SOLAR PV YIELD SIMULATION OF 

GSRF 
 

(4.1) Hourly and Annual PV Yield Projections for 2007-2015 

The SAM model was used to simulate PV yields for the whole Gatton array using the 

near-object and self-shading loss percentages reported in Tables 3 to 6 and augmented soiling 

losses outlined in Table 2 for the three particular soiling scenarios: (1) low; (2) medium; and 

(3) high. The annualised total PV yields of the whole solar farm and for the period 2007-2015 

are reported in Table 9 for each soiling scenario. It should be noted that because of satellite 

problems, solar irradiance data was missing from the BOM’s hourly solar irradiance dataset 

for: (1) year 2008, 14 to 17 of March and 10-13 of April; and (2) year 2009, 17-18 of 

February, 12 and 16-27 of November. Thus, the annual production totals reported in Table 9 

for years 2008 and 2009 will be understating the true annual production levels as a result of 

this missing data. Moreover, both the annual production data reported in Table 9 and the 

Typical Meteorological Year (TMY) calculations reported below are based on the hourly 

solar PV yields generated from SAM model simulations for years 2007 to 2015, assuming 

365 days in each year.  Hence the extra day (e.g. 29 February) has been dropped for leap 

years 2008 and 2012. 

Inspection of Table 9 indicates that for the period 2007-2015, the best year for solar 

PV yield was 2014, followed by years 2013 and 2012.  These years were categorised as 

ENSO neutral but with an emerging strong El Nino bias.  Interestingly and somewhat 

surprisingly, 2015 with its very strong El Nino pattern reverted back to a more average PV 

yield, suggesting a complicated relationship between El Nino strength and PV yield.  

Other good years were 2007 and 2009, especially when accounting for the missing 

data in the latter case.  Year 2007 can be classified as involving a transition from a weak El 

Nino pattern through the first half of 2007 into a moderate strength La Nina pattern over the 

second half of 2007. Year 2009, in turn, can be classified as transitioning from ENSO neutral 
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conditions during the first half of 2009 into a moderate strength El Nino over the second half 

of  2009 (Null, 2016).  

The other very noticeable feature in Table 9 is the noticeably lower annual PV yields 

over years 2010 and 2011. These particular years involved a transition from a moderate 

strength El Nino pattern over the first half of 2010 into a moderate strength La Nina over the 

second half of 2010 and first half of 2011 before evolving into a weaker La Nina pattern over 

the remainder of 2011 (Null, 2016). 

Table 9. Annual Solar PV Yield Projections (MWh’s) from SAM 

Simulations by Soiling Scenario 

 Soiling scenario 

Year low medium high 
2007  6586 6499 6352 

2008  6439 6354 6208 

2009  6497 6406 6254 

2010  5787 5710 5581 

2011  6235 6151 6010 

2012 6591 6504 6355 

2013  6790 6702 6550 

2014  6907 6816 6662 

2015 6499 6417 6276 

Average 6481 6395 6250 

% Change  -1.3 -3.6 

 

The average annual PV yield calculated from the annual results reported for years 

2007-2015 in Table 9 are listed in the second last row of that table. Across the three soiling 

scenarios considered, the average annual PV yield falls in the range of 6250 to 6481 MWh’s. 

Annual average solar PV yield also declines as the degree of module soiling increases. The 

last row of Table 9 reports the percentage change in average annual PV yield for medium and 

high soiling relative to the average annual PV yield associated with low soiling. We see 

percentage reductions in average annual PV yield of 1.3 and 3.6 per cent, respectively, for the 

medium and high soiling scenarios relative to the low soiling scenario’s average annual PV 

yield. 
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(4.2) Empirical Distribution Functions of Hourly PV Yields and TMY 

Calculations 

We also used the hourly PV yields for years 2007 to 2015 as source data for TMY 

analysis. This was implemented by stacking each year’s 8760 hourly PV yields across the top 

of a spreadsheet in chronological order commencing with 2007 and moving column-wise 

across the spreadsheet for years 2008 to 2015. We then calculated various statistical 

thresholds of interest, including minimum, maximum, average, median, and elsewhere 

incrementing by a percentile range of ten percentage points. That is, we calculated the 10th, 

20th, 30th percentiles of the column-wise stacked 2007-2015 hourly PV yield data, continuing 

up to the 80th and 90th percentiles. Of course, the minimum and maximum corresponds to the 

zero and 100th percentile while the median correspond to the 50th percentile. In statistical 

parlance, these percentiles would also give us the 100%, 90% 80%,…, 20%, 10% and 0% 

probabilities of exceedance (POE) results respectively. Note that applying each of these 

statistical thresholds would give a series of 8760 values corresponding to each hour in a year. 

To determine the empirical distribution functions of the data corresponding to these 

statistical thresholds, we calculated the absolute value of the difference between the sequence 

of hourly threshold values and hourly production values of each year and aggregated these 

differences values over each individual month for each year in the interval 2007-2015. Note 

that the month of PV yield (e.g. production) data of a year that is the closest statistical match 

to the monthly data associated with each respective statistical threshold would have the 

lowest magnitude associated with the monthly summed difference values.  For each statistical 

threshold mentioned above, the choice of month and year with the closest statistical match 

are reported in Table 10.      

It is apparent from Table 10 that the monthly results jump around quite markedly 

although 2010 and 2011 tend to dominate in relative terms for lower statistical threshold 

levels (e.g. minimum, 90% POE and 80% POE thresholds). In contrast, 2013 and 2014 tend 

to dominate in relative terms for the higher threshold levels (e.g. 20% POE, 10% POE and 

maximum thresholds). For the mid-range thresholds (e.g. encompassing the range of 70% 

POE to 40% POE), years 2007, 2009 and 2012 appear to have relative prominence.  

Using the year/month information reported in Table 10, we can ‘pull out’ the relevant 

month and year data records from the original SAM simulations underpinning the results in 

Table 9 and construct artificial annual data series consistent with these particular statistical 
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threshold levels. This data will have 8760 individual hourly data points by construction. We 

then aggregate this hourly data over the year in order to derive annual production totals (in 

MWh’s) and annual capacity factors (ACF’s) consistent with each statistical threshold and 

soiling scenario. Note that in all cases, the ACF’s are calculated against an energy sent-out 

maximum capacity of 3.15 MW. These results are reported in Table 11, Panels (A)-(C).   

Examination of Table 11 indicates that for each respective statistical threshold level 

the production totals and ACF’s both decline as the extent of module soiling increases. 

Moreover, as we move from lower to higher statistical thresholds [e.g. from Panels (A) to 

(C)], the production totals and ACF values increase across all the soiling scenarios. The range 

of the annualised production aggregates across both statistical threshold level and soiling 

scenario commences in the range of 5130 to 5327 MWh’s (for the minimum statistical 

threshold) and increases in range to 7112 to 7369 MWh’s associated with the maximum 

statistical threshold. Moreover, the ACF values increase from the lower-range band of 18.6 to 

19.3 per cent to the upper-range band of 25.8 to 26.7 per cent.  

Note that the average and median values for productions aggregates also differ quite 

markedly with the median values of 6716 to 6965 MWh’s being well above the average 

values of 6330 to 6573 MWh’s. This indicates that the empirical distribution function of the 

hourly PV yields over years 2007 to 2015 is left skewed – i.e. it has a much longer left hand 

side tail. The bunching of observations in the upper tail of the empirical distribution function 

is also indicated by the fact that the production results in Table 11 and year/month details in 

Table 10 coincide for both the 10% POE and maximum statistical threshold levels. 

In Table 12, we cross-match the closest statistical threshold annual production values 

to the yearly simulated production totals that were reported in Table 9 using red shading and 

an ‘X’ symbol. From this table, it is clear that most years in the interval 2007-2015 are 

closest to the production total corresponding to the average statistical threshold. Once again, 

reflecting the observed left skewness of the empirical distribution function of the hourly PV 

yields, this particular threshold falls well to the left of the median statistical threshold, lying 

between the 70% POE and 60% POE statistical threshold levels. This means, in statistical 

terms, that the best estimate we have for annual PV yield under normal conditions would be 

between 6330 and 6573 MWh (depending upon soiling) or equivalently, between 22.9 and 

23.8 per cent ACF.   
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For worse than normal conditions, the best estimate would be between the 80% POE 

and 70% POE thresholds giving a range for annual PV yield of between 5805 to 6223 MWh, 

or equivalently, between 21.0 to 22.6 per cent ACF. Furthermore, from analysis of PV yield 

over 2007-2015, these latter type of results are most likely to be linked to moderate or strong 

La Nina weather patterns with the worst outcomes more likely to be associated with stronger 

La Nina patterns. 

For better than normal conditions, the best estimate for annual PV yield is likely to 

fall between the results associated with 60% POE and 50% POE (e.g. median) results. This 

points to an output range of 6531 to 6965 MWh’s or equivalently, 23.7 to 25.2 per cent ACF. 

Once again, from analysis of PV yield over 2007-2015, the conditions that would seem to 

best support this type of result would be ENSO neutral conditions but with a strong El Nino 

bias. However, note that definite El Nino conditions do not seem to produce the best 

conditions for PV yield harvesting. For example, years with definitive El Nino weather 

patterns (e.g. broadly encompassing 2007, 2009 and 2015) produced average PV yields as 

documented in Table 12, notwithstanding the missing solar irradiance data in 2009. Also, 

only one year (e.g. 2014) produced PV yield outcomes that were consistent with the median 

yield calculated from our TMY methodology. Moreover, no simulated annual PV yield 

estimates relating to results in Table 9 corresponded to production levels above this median 

threshold.  

The results above indicate that the best year for annual PV yield over the period 2007-

2015 was year 2014 whose annual PV yield was only consistent with the annual output 

associated with the median statistical threshold. This implies, in turn, a 50 per cent chance of 

exceeding this result using data from the SAM PV simulations for the period 2007 to 2015. 

Furthermore, the annual PV production of other years lie below this statistical threshold with 

most of the annual results associated with the average statistical threshold. This latter 

threshold, falls between the 60 and 70 per cent probability of exceedance thresholds and 

implies that the simulated data could be re-organised to exceed these annual PV yields over 

60 per cent of the time.   This implies that for the 2007-2015 period we do not experience a 

consecutive run of good PV yielding months in any year to push the aggregate annual PV 

yield above the calculated median statistical threshold.   

In order to see this, recall that the annual PV yield for 2014 was consistent with the 

median statistical threshold. However, in Table 10, in constructing the median threshold, only 
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three months of 2014 were used – April, October and December.  Even for the 10% POE and 

maximum statistical thresholds in Table 10 associated with the highest statistical thresholds 

for annual PV yield, year 2014 (the best year) only contributes five months – January, 

February, June, October and November. The next best year 2013 contributes only two 

additional months, August and December. This means that five other months listed in Table 

10 for these two statistical thresholds correspond to years other than 2014 and 2013. Thus, 

from the SAM simulated PV yields over years 2007-2015, it is potentially possible to 

significantly exceed the highest observed annual yield corresponding to year 2014 if the 

weather was accommodating enough to produce a significant run of consecutive high 

yielding months. However, this phenomenon was not been observed in any of the actual 

annual simulated PV yields cited in Table 9 for the interval 2007-2015.  
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Table 10. Year by Month Selections for Typical Meteorological Year (TMY) Calculations 

 
Month Min 90% 

POE 

80% 

POE 

70% 

POE 

Average 60% 

POE  

Median 40% 

POE 

30% 

POE 

20% 

POE 

10% 

POE 

Max 

January 2011 2008 2009 2009 2009 2007 2007 2007 2007 2014 2014 2014 

February 2008 2010 2010 2010 2007 2007 2007 2007 2007 2007 2014 2014 

March 2010 2010 2010 2011 2011 2011 2007 2007 2007 2007 2007 2007 

April 2011 2011 2009 2014 2014 2014 2014 2014 2014 2007 2007 2007 

May 2013 2010 2012 2012 2012 2012 2012 2012 2008 2008 2008 2008 

June 2012 2012 2012 2012 2012 2012 2012 2014 2014 2014 2014 2014 

July 2010 2013 2015 2015 2009 2009 2009 2014 2014 2014 2007 2007 

August 2011 2011 2011 2012 2012 2012 2012 2009 2009 2009 2013 2013 

September 2010 2010 2012 2012 2012 2009 2009 2009 2009 2009 2009 2009 

October 2010 2010 2007 2007 2012 2012 2014 2014 2014 2014 2014 2014 

November 2009 2010 2010 2010 2011 2011 2011 2011 2014 2014 2014 2014 

December 2010 2010 2007 2007 2007 2014 2014 2013 2013 2013 2013 2013 

 

Table 11. Annual Solar PV Yield Projections for Total Gatton Array by Soiling Type and POE/Statistical 

Threshold 

Panel (A) Lower range thresholds 

 Minimum 90% POE 80% POE 70% POE 

Soiling Low Medium High Low Medium high Low Medium High Low Medium high 

MWh 

Production 

5327 5253 5130 5512 5438 5312 6032 5948 5805 6223 6136 5989 

ACF (%) 19.3 19.0 18.6 20.0 19.7 19.2 21.9 21.6 21.0 22.6 22.2 21.7 
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Panel (B) Mid-range thresholds 

 Average  60% POE  50% POE (Median)  40% POE 

Soiling Low Medium High Low Medium high Low Medium High Low Medium high 

MWh 

Production 

6573 6482 6330 6777 6685 6531 6965 6873 6716 7245 7151 6991 

ACF (%) 23.8 23.5 22.9 24.6 24.2 23.7 25.2 24.9 24.3 26.3 25.9 25.3 

Panel (C) Upper range thresholds 

 30% POE   20% POE   10% POE   Maximum  

Soiling Low Medium High Low Medium high Low Medium High Low Medium high 

MWh 

Production 

7315 7220 7060 7345 7250 7089 7369 7274 7112 7369 7274 7112 

ACF (%) 26.5 26.2 25.6 26.6 26.3 25.7 26.7 26.4 25.8 26.7 26.4 25.8 

 

Table 12. Cross Classification of Annual Simulated Production Totals with POE Production Totals 
 

Year Min 90% 

POE 

80% 

POE  

70% 

POE 

Average  60% 

POE  

Median 40% 

POE 

30% 

POE 

20% 

POE 

10% 

POE 

Max 

2007     X        

2008     X        

2009     X        

2010   X          

2011    X         

2012     X        

2013      X       

2014       X      

2015     X        
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(4.3) ENSO Forecasts and PV Yield Prognoses for 2016, 2017 and 2018 

Current ENSO Forecasts for the remainder of 2016 

The most recent 2016 plume of model ENSO predictions for the mid-June 2016 

period compiled by both the International Research Institute (IRI) for Climate and Society 

(2016) and NOAA-NCEP (2016) are reported in Panels (A) and (B) of Figure 2, respectively. 

Given the severity of the recent 2015-16 El Nino event, the current consensus of the weather 

models included in Figure 2, Panel (A) seem to be pointing to either ENSO neutral conditions 

with a strong La Nina bias (most likely) or a weak La Nina event during the second half of 

2016. The former outcome is suggested by the dynamic average of the model plumes as 

indicated by the yellow line in Figure 2, Panel (A).  

In Panel (B) of Figure 2, the CFS.v2 ensemble mean (e.g. the black dashed line) 

predicts a rapid transition to La Niña by the July-August-September (JAS) 2016 timeframe. 

However, the magnitudes of the negative SST anomalies in Panel (B) are larger than -1.0 and 

thus broadly point to ENSO neutral conditions with strong La Nina bias.   

Finally, in Panel (C) of Figure 2, the latest forecast of the POAMA model of the BOM 

published on 22 May 2016 also tends to support ENSO neutral conditions with strong La 

Nina bias emerging over the remainder of 2016 (BOM, 2016).  BOM (2016) also confirms 

the end of the current 2015-16 El Nino event with indicators now officially entering into the 

ENSO neutral phase of the ENSO cycle. 

In summary, all three models: (1) IRI [Panel (A)]; (2) CFSv2 [Panel (B)]; and (3) 

POAMA [Panel (C)] generally point to ENSO neutral conditions but with a strong La Nina 

bias developing over the remainder of 2016. The models do not provide any further forecasts 

for the period beyond the December 2016 to February 2017 timeframe. Therefore, 

considerable uncertainty exists about both ENSO status and strength of any La Nina event 

that might emerge during 2017 and extending into 2018. 
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Figure 2. 2016 June 2016 ENSO Forecasts 

Panel (A): IRI2 

 

 

 

Panel (B): NOAA-NCEP 

 

 
                                                           
2 This figure was sourced from: http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/ and 
updated on 16 June 2016 and accessed on 23-6-2016. 

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/
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Panel (C): BOM-POAMA3 

 

 

Projected Annual PV Yield: 2016 

Given the 2016 ENSO forecasts mentioned above as well as the cross-matching 

between PV yields by year and statistical threshold highlighted in Table 12, the most likely 

prognosis (highlighted in red font below) is for annual PV yield in 2016 to fall in the band: 

 6330 to 6573 MWh if ENSO neutral conditions with a strong La Nina bias was to 

emerge over the remainder of 2016 (judged the most likely case); or 

 

 5989 to 6223 MWh if a weak La Nina event was to emerge over the remainder of 

2016. 

Discussion: 

More generally, given the likelihood of either: (1) ENSO neutral with significant La 

Nina bias; or (2) very weak La Nina event arising over the remainder of 2016, we would 

expect total annual PV yield to fall within the average statistical threshold 6330 to 6573 

MWh’s band but with a downside risk to around 6223 MWh if a slightly stronger than 

expected La Nina pattern were to emerge during the remainder of 2016. 

                                                           
3 This figure was sourced from http://www.bom.gov.au/climate/enso/#tabs=Outlooks. It was accessed on 23-
6-2016. 

http://www.bom.gov.au/climate/enso/#tabs=Outlooks
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Projected Annual PV Yield: 2017 

The situation that ultimately arises in 2017 will significantly depend on what weather 

conditions prevail over the remainder of 2016. Initial guidance in Figure 2 indicates 

continuation of similar conditions to what emerged over 2016 – e.g. ENSO neutral conditions 

with strong La Nina bias or weak LA Nina conditions. However, some doubt exists over the 

potential strength of any La Nina event emerging during 2017. Overall, this would suggest 

the following conservative prognosis for PV yield in 2017: 

 6330 to 6573 MWh if ENSO neutral conditions with a strong La Nina bias emerge 

during 2017; 

  

 5989 to 6330 MWh if a weak La Nina event emerges during 2017 (judged the most 

likely case); or 

 

 5805 to 5989 MWh’s if a moderate to strong La Nina event was to emerge during 

2017. 

Discussion: 

One reason why the second band has been given the most weight is that unlike the 

situation arising in 2010 and 2011 when a moderate La Nina event emerged in 2010-11 

followed by a weaker one in 2011-12, the reverse situation appears to be expected from the 

results identified in Figure 2. In particular, ENSO neutral conditions with a strong La Nina 

bias is currently expected to develop over the remainder of 2016 followed potentially by a 

weak La Nina event in 2017.  

However, it should be recognised that considerable uncertainty surrounds the question of 

strength and ENSO status in 2017. Thus, we allow for downside risk to annual projected PV 

yield in the range of 5805 to 5989 MWh’s in the case that either a moderate or strong La 

Nina event was to emerge in 2017.  Similarly, we also account for a potential upside gain in 

projected annual PV yield in the range of 6330 to 6573 MWh’s in the case that ENSO neutral 

conditions were to continue in 2017.   

Projected Annual PV Yield: 2018 

Longer term projections for 2018 would appear to suggest an ENSO neutral pattern if 

2017 had either ENSO neutral or weak La Nina weather patterns or possibly a weak La Nina 
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event if 2017 was characterised by moderate or strong La Nina weather patterns. Of these two 

cases, the most likely prognosis for longer term 2018 annual PV yield projection would be: 

 6330 to 6573 MWh if ENSO neutral conditions with La Nina bias or a weak La Nina 

event emerges during 2017 followed by ENSO neutral conditions in 2018 (judged the 

most likely case); or 

  

 5989 to 6330 MWh if a moderate to strong La Nina event emerges during 2017 

followed by a weak La Nina event in 2018. 

Discussion: 

The above reasoning indicates the most likely range for annual PV yield in 2018 

would be in the range 6330 to 6573 MWh’s with perhaps a slight downside risk to around 

6223 to 6330 MWh if a moderate or strong La Nina event had emerged in 2017.  

For the convenience of readers, a summary of the above annual PV yield projections 

by year and according to: (1) most likely output range; (2) downside risk output range; and 

(3) upside gain output range, are reported in Table 13. 

Table 13. Summary of 2016-2018 Projected Annual Solar PV Yield 

(MWh’s) 

Year/Comment Most likely range 
(MWh’s) 

Downside risk (MWh’s) Upside gain (MWh’s) 

2016 6330 to 6573 6223 to 6330 N.A. 

Comment ENSO neutral with 
strong La Nina bias 
during second half of 
2016 

Weak La Nina event 
during second half of 
2016 

N.A. 

 

2017 5989 to 6330 5805 to 5989 6330 to 6573 

Comment Weak La Nina event 
during 2017 

Moderate to strong La 
Nina event during 2017 

ENSO neutral with 
strong La Nina bias 
during 2017 

 

2018 6330 to 6573 6223 to 6330 N.A. 

Comment ENSO neutral with 
strong La Nina bias 
during 2018 

Weak La Nina event 
during 2018 

N.A. 
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(5) CONCLUSIONS 

Economic assessment of the viability of solar PV farms depends crucially on the PV 

yield of these farms. For utility scale solar PV farms, PV yield will underpin revenue streams 

available from the sale of electricity in wholesale market or through PPA contracts as well as 

from the sale of renewable energy certificates. Solar PV yield will depend on a number of 

different factors including solar irradiance and weather conditions, soiling and shading effects 

and electrical losses associated with both solar array infrastructure and the electricity 

network.  

In Australia, the combined effects of weather relating to solar irradiance, temperature 

and rainfall on PV yield is likely to be closely linked to the El Niño–Southern Oscillation 

ENSO cycle. This paper investigated the interaction between PV yield and ENSO by 

simulating hourly PV yields using NREL’s SAM for years 2007-2015 which captured 

different phases of the ENSO cycle. This modelling was applied to The University of 

Queensland’s GSRF which is a 3.275 megawatt pilot solar PV plant. In modelling PV yields 

using the SAM model, different soiling regimes and near-object and self-shading effects were 

accounted for.  

Hourly PV yields were simulated for years 2007 to 2015. These results indicated that 

the best simulated PV yields were obtained during 2013 and 2014 when ENSO neutral 

conditions with an emerging El Nino bias prevailed. The worst years for simulated PV yield 

were years 2010 and 2011 which were characterised by moderate and weak La Nina phases 

of ENSO, respectively.  All other years considered had average PV yield outcomes. 

Interestingly, this also included 2015 which experienced a very strong El Nino suggesting a 

complicated relationship between El Nino strength and PV yield.  

This hourly PV yield data was also used as source data for TMY analysis. In this 

approach, we effectively calculated the empirical distribution functions of this data for 

various statistical thresholds of interest. We then constructed artificial annual hourly PV yield 

data series on the basis of year/month choice that most closely approximated the statistical 

properties at these statistical thresholds. We then compared the annualised production 

outcomes from these artificial data series against those simulated for years 2007 to 2015 to 

classify the individual years against the statistical thresholds. The distribution of the 

simulated PV yields for years 2007-2015 were left skewed. For example, average statistical 

threshold fell between the 70% and 60% probability of exceedance thresholds whilst the 
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median profile had, by definition, a 50% probability of exceedance. Most of the annual 

simulated PV yield totals for years 2007-2015 were matched closest to the production 

aggregate corresponding to the average statistical threshold. Annual PV yield during La Nina 

years were below normal, being consistent with PV yield profiles that had between 70% and 

80% probability of exceedance.   In contrast, the two best years were above normal, being 

consistent with PV profiles that had between 50% and 60% probability of exceedance. The 

best year 2014 was consistent with the median statistical threshold – e.g. had a 50% 

probability of exceedance profile. 

It was also evident from the statistical analysis that the SAM simulated PV yields over 

years 2007-2015 could be re-ordered to potentially exceed the highest observed annual yield 

corresponding to year 2014 by a significant margin if the weather was accommodating 

enough to produce a significant run of consecutive high yielding months. However, this 

phenomenon was not observed in any of the actual simulated annual PV yields corresponding 

to the years in the interval 2007-2015.  

PV yield projections were also developed for years 2016 to 2018 based upon the latest 

forecasts available for ENSO over the remainder of 2016 and statistical analysis of the hourly 

PV yields over 2007-2015. These forecasts indicated ENSO neutral conditions with a strong 

La Nina bias or weak La Nina patterns during the remainder of 2016. The status and strength 

of any potential La Nina event was more uncertain over the 2017-2018 timeframe.  The bias 

towards the La Nina phase of ENSO suggested average to below average PV yields over the 

next couple of years with the most probable range falling within the 70% to average 

probability of exceedance range.  
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